Σ^- atomic states and the nucleon distribution in Pb

J. Dabrowski^a and J. Rożynek

Theoretical Division, Soltan Institute for Nuclear Studies, Hoza 69, Pl-00-681 Warsaw, Poland

Received: 15 February 2005 / Published online: 31 May 2005 – \odot Società Italiana di Fisica / Springer-Verlag 2005 Communicated by V. Vento

Abstract. The analyses of (K^-,π) and (π^-,K^+) reactions indicate that the nuclear potential of the Σ-hyperon is repulsive inside the nucleus, in agreement with the prediction of model F of the Nijmegen baryon-baryon interaction. This is consistent with the recent calculation of the strong-interaction shifts and widths of the observed levels of Σ^- atoms, including the precise data on the Σ^- Pb atom. In this paper, the sensitivity of this calculation to the neutron and proton density distributions is used to determine these densities in ²⁰⁸Pb.

PACS. 13.75.Ev Hyperon-nucleon interactions – 36.10.Gv Mesonic atoms and molecules, hyperonic atoms and molecules

1 Introduction

The analyses [1–3] of the Brookhaven (K^-, π) experiments [4] and of the KEK (π^-, K^+) experiments [5] clearly lead to the conclusion that the nuclear potential of the Σ hyperon is repulsive inside the nucleus, in agreement with the prediction of model F [6] of the Nijmegen baryonbaryon interaction¹.

As we have shown in [8] (hereafter referred to as I), this conclusion is consistent with properties of Σ^- atoms, *i.e.*, strong-interaction shifts ϵ and widths Γ of the lowest observed levels of Σ^- atoms, including the precise data on the Σ^- Pb atom [9]. In calculating ϵ and Γ in I we applied a definite form of the proton and neutron density distributions ρ_p and ρ_n in the nuclear core of the Σ^- atoms considered. The resulting values of ϵ and Γ are sensitive to the form of ρ_p and ρ_n .

In the present paper, we exploit this sensitivity to determine ρ_p and ρ_n in the ²⁰⁸Pb nucleus. We choose this nucleus because of the relatively high accuracy of the $\Sigma^$ data of ref. [9]. Furthermore, the oversimplified nucleon densities in ²⁰⁸Pb, applied in I, were not well founded.

We apply the following procedure: we start with Hartree-Fock (HF) densities ρ_p and ρ_n which we apply in calculating ϵ and Γ for the two lowest states observed in Σ^- Pb. We do it for three models of the Nijmegen ΣN interaction: models D [10] and F [6], and the soft-core model SC [11]. Next, we modify ρ_p and ρ_n to a final form which assures that the best agreement between the calculated and observed values of ϵ and Γ is achieved with model F. Namely, we know from the analysis of the (K^-, π) and (π, K^+) experiments that among the Nijmegen models only model F is consistent with these experiments.

Our computational procedure is outlined in sect. 2, and our results are presented and discussed in sect. 3.

2 The computational procedure

We calculate ϵ and Γ in the way described in detail in I. We solve the Schrödinger equation for the wave function Ψ of Σ^- in the atom:

$$
[-(\hbar^2/2\mu)\Delta + V_C(r) + V(r) + iW(r)]\Psi = \mathcal{E}\Psi,
$$
 (1)

where μ is the Σ^- -nucleus reduced mass and V_C is the Coulomb interaction between Σ^- and the nucleus. Because of the $\Sigma\Lambda$ conversion process $\Sigma^-p \to \Lambda n$, the strong-interaction potential $V + iW$ is complex and the eigenvalue $\mathcal E$ is also complex, $\mathcal E = E_{\rm C} - \epsilon - i \Gamma/2$, where $E_{\rm C}$ is the pure Coulomb energy.

To calculate the real and absorptive strong-interaction potentials V and W , we apply the local-density approximation in which the Σ^- atom is treated at each point as Σ^- moving in nuclear matter with the local nuclear density of the Σ^- atom:

$$
V(r) = V^{\text{NM}}(\rho_n(r), \rho_p(r)),
$$

$$
W(r) = W^{\text{NM}}(\rho_n(r), \rho_p(r)),
$$
 (2)

where $V^{\text{NM}}(\rho_n, \rho_p)$ and $W^{\text{NM}}(\rho_n, \rho_p)$ are the real and imaginary parts of the single-particle (s.p.) potential of

a e-mail: dabrnucl@fuw.edu.pl

 $^{\rm 1}$ Let us mention also that model F applied to the \varLambda + nuclear-matter system, solves the so-called Λ overbinding problem [7].

Table 1. Energy shifts ϵ , ϵ^u and widths Γ , Γ^u calculated with the indicated models of the ΣN interaction and the nucleon densities, respectively for the lower and upper level of the Σ^- Pb atom and the corresponding values of χ^2 for the 3 experimental Pb data. All energies are in eV.

					$\Gamma^{\rm u}$	
	$V_{\Sigma N}$	ϵ	Г	$\epsilon^{\rm u}$		χ^2
$HF \longrightarrow \rho_n, \rho_p$ ^(a) \mathbf{A}	D	448.1	506.7	11.5	8.9	7.9
	\mathbf{F}	24.7	236.6	2.4	6.0	65.2
	SС	250.1	367.7	7.7	7.5	19.6
$V_\tau=0$ B)	D	762.4	743.6	19.2	10.6	45.4
	F	349.9	300.2	13.6	7.0	13.4
	SC	235.5	380.5	6.8	7.6	21.0
C) $\rho_p \longrightarrow \bar{\rho}_p = \frac{Z}{N} \rho_n$	D	688.2	891.6	20.1	19.4	31.9
	\mathbf{F}	266.6	495.0	12.7	15.3	8.2
	SС	268.6	626.6	8.8	16.6	9.1
D) $\bar{\rho}_p \longrightarrow \tilde{\rho}_p = \bar{\rho}_p + \delta \bar{\rho}_p$	D	658.2	770.6	19.9	18.3	22.7
	\mathbf{F}	272.7	467.8	13.2	15.1	7.6
	SС	270.4	582.4	8.8	16.2	8.4
Experiment ^(b)		422 ± 56	428 ± 158		17 ± 3	

 $\binom{a}{b}$ Taken from ref. [17].

 $\binom{b}{b}$ Taken from ref. [9].

 Σ^- in nuclear matter with neutron and proton densities ρ_n and ρ_n .

An expansion in terms of the neutron excess parameter $\alpha(r) = (\rho_n(r) - \rho_p(r))/\rho(r)$ [$\rho = \rho_n + \rho_p$] leads to the splitting of V into the isoscalar potential V_0 and the isovector or Lane potential V_τ :

$$
V(r) = V_0(r) + \frac{1}{2}\alpha(r)V_\tau(r),
$$

\n
$$
V_0(r) = V_0^{\text{NM}}(\rho(r)), \quad V_\tau(\rho(r)) = V_\tau^{\text{NM}}(\rho(r)), \quad (3)
$$

where V_0^{NM} and V_{τ}^{NM} are the isoscalar and Lane potentials in nuclear matter with total density ρ (and with $N = Z$). For V_0^{NM} and V_{τ}^{NM} we use expressions in terms of the effective ΣN interaction derived in [12]. In the case of the Nijmegen baryon-baryon interaction models considered in this paper, we apply the effective YNG interaction obtained in [13] within the low-order Brueckner theory.

For the absorptive potential, we apply the semiclassical expression² $W^{\text{NM}} \simeq -\frac{\hbar}{2}$ $\frac{h}{2}\rho_p\langle v\sigma\rangle$, where $\langle \ \rangle$ denotes averaging in the Fermi sea, v is the relative Σ^-p velocity, and σ is the total cross-section for the $\Sigma^-p \to An$ conversion process, for which we use the parametrization [14]: $(v/c)\sigma = (1+13v/c)^{-1}5.1$ fm², see footnote ³.

3 Results and discussion

In the Σ ^{- 208}Pb atom there are three data points measured in [9]: the energy shift ϵ and the width Γ of the lower level with the principal and orbital quantum numbers $n = 9$, $l = 8$, and the width Γ^{u} of the upper level with $n = 10$, $l = 9$. They are shown in the bottom line in table 1. We want to find nucleon densities in ²⁰⁸Pb, $\rho_n(r)$ and $\rho_n(r)$ which lead to the best agreement between the calculated and measured values of ϵ, Γ and Γ^{u} . We do it in four steps, A –D).

A) We start with HF densities calculated by Skalski [17] with the Skyrme interaction SkM[∗] . They are shown in fig. 1 as the solid curves denoted as ρ_n and ρ_n . Our results for the strong-interaction shifts and widths of the lower and upper level in the Σ ⁻Pb atom, obtained with models D, F and SC of the Nijmegen interaction, are shown in table 1, together with the values of χ^2 calculated for the three experimental data points⁴. We see that the value of ϵ calculated with model F is much smaller than the experimental value. These results favor model D which —as discussed before— is incompatible with the results of the Brookhaven (K^-,π) and the KEK (π^-,K^+) experiments. We interpret it as an indication that the HF nucleon densities require modifications.

B) To get a hint on how to modify the HF densities, let us consider the effect of the Lane potential V_{τ} . As discussed in I, V_{τ} is repulsive and thus its presence diminishes the resulting value of ϵ . Consequently, if we disregard V_{τ} , the resulting value of ϵ should increase and improve the agreement of model F results with experiment. This is indeed so as seen in table 1. At the same time, the resulting value of ϵ for model D becomes too great compared to the experimental result. The situation with the SC model is slightly different because V_{τ} for this model is relatively weak, and at very low density it becomes even attractive. Anyhow, we see that in the absence of V_{τ} , model F leads to the best agreement with the experimental data.

² The expression actually used contains exclusion principle corrections and the nucleon effective mass.

³ Our final conclusions would remain unchanged if we used for σ the parametrization of Oset *et al.* [15], discussed in [16].

⁴ We do not consider the new soft-core model [18], because —as shown in [12]— it leads to an attractive V_{τ} inside the nucleus which is incompatible with the Brookhaven (K^-,π) experiments [4].

C) However, a relatively strong Lane potential is implied by the Nijmegen baryon-baryon interaction models (especially model F) and it cannot be disregarded as it is essential in interpreting the Brookhaven (K^-,π^{\pm}) experiments. Instead, we may diminish its contribution $\frac{1}{2}\alpha(r)V_{\tau}(r)$ to $V(r)$ by diminishing the neutron excess parameter $\alpha(r)$ in the region of r essential in calculating ϵ and Γ. As discussed in I, this region for the lower state is around $r \sim 9$ fm, and here our HF densities lead to a substantial neutron excess, much bigger than the overall value $\bar{\alpha} = (N - Z)/A$. The simplest way to reduce $\alpha(r)$ to the value of $\bar{\alpha}$ is to replace the original HF proton density $\rho_p(r)$ by $\bar{\rho}_p(r) = \frac{Z}{N} \rho_n(r)$. And indeed —as is seen in table 1— with this form of the proton density distribution, model F leads to the best agreement with experiment⁵.

D) Our proton density, $\bar{\rho}_p(r)$, leads to the root-meansquare (r.m.s.) radius of proton distribution $R_p[\bar{\rho}_p] =$ $\langle r^2|\bar{\rho}_p\rangle^{1/2} = 5.62$ fm, which is too big compared to the semi-empirical r.m.s. radius of (point) proton distribution $R_p^{\rm se} = 5.44$ fm (this value of $R_p^{\rm se}$ leads —after taking into account the r.m.s. proton charge radius of 0.8 fm— to the r.m.s. radius of the charge distribution $R_{ch} = 5.50$ fm which is consistent with the r.m.s. charge radii of $^{208}{\rm Pb}$ tabulated in [19] and in table XII in [20]). To reduce R_p to the semi-empirical value of 5.44 fm, without increasing the neutron excess in the peripheral region important in the Σ ⁻Pb problem, we shift some of the protons from the interior region close to the nuclear surface towards the nuclear center. We do it by adding $\delta \bar{\rho}_p$ to $\bar{\rho}_p$ obtaining our final proton density $\tilde{\rho}_p(r) = \bar{\rho}_p(r) + \delta \bar{\rho}_p(r)$. For $\delta \bar{\rho}_p$ we assume the form

$$
\delta \bar{\rho}_p(r) = x_1 e^{-(r/w_1)^2} - x_2 e^{-((r-R_2)/w_2)^2}, \qquad (4)
$$

where x_2 is determined by the condition: $4\pi \int dr r^2 \delta \tilde{\rho}_p(r)$ = 0. For the remaining parameters we assume the values $x_1 = 0.75(\rho_n(0) - \bar{\rho}_p(0)), R_2 = 6.66$ fm, $w_1 = 3.66$ fm, and $w_2 = 1.0$ fm. With these parameters, the r.m.s. radius of the proton distribution becomes equal to the semiempirical radius, $R_p[\tilde{\rho}_p] = 5.44$ fm.

Our final neutron and proton density distributions $\rho_n(r)$ and $\tilde{\rho}_p(r)$ are shown in fig. 1. Results obtained with these densities for strong-interaction energy shifts and widths of the two lowest observed levels in Σ ⁻Pb, are presented in table 1. They clearly favor model F with the value of χ^2 per degree of freedom, $\chi^2/3 = 2.5$. One obtains very similar results if one applies the HF SkX densities calculated by Brown [21]. These densities and the corresponding proton density $\tilde{\rho}_p$ are presented in fig. 1 as dotted lines.

For the r.m.s. radius of the neutron distribution, we get $R_n[\rho_n] = \langle r^2[\rho_n] \rangle^{1/2} = 5.62$ fm, and for the neutron skin $S = R_n[\rho_n] - R_p[\tilde{\rho}_p] = 0.18$ fm. These results agree with

Fig. 1. The HF densities ρ_n , ρ_p of ref. [17] (solid curves) and ref. [21] (dotted curves), and the corresponding modified proton densities ρ_p .

the results obtained from the analyses of nucleon elastic scattering [22], of neutron equation of state [23], and of pionic atoms [24].

Although our proton density $\tilde{\rho}_p(r)$ leads to the semiempirical value of 5.44 fm of the r.m.s. radius, it differs from the proton densities implied by the charge density distributions tabulated in [19] and [20]. In the nuclear center, our ρ_p is bigger than what is implied by the tabulated charge density distributions. This difference, however, appears not so important if one considers the more relevant quantity $r^2 \rho(r)$. In the nuclear periphery relevant for the observed levels in the Σ ⁻Pb atom, the neutron excess $(\rho_n(r) - \tilde{\rho}_p(r))/(\rho_n(r) + \tilde{\rho}_p(r))$ is close to $\bar{\alpha} = (N-Z)/A$, whereas the neutron excess obtained with the HF densities approaches the value one. This is reflected in the values of the higher moments of our proton distribution, $\langle r^4 \rangle^{1/4}$ and $\langle r^6 \rangle^{1/6}$, which are greater than the HF values and the values implied by table IX in [20].

We conclude with the following comments:

– To reach our conclusions concerning the nucleon density distribution in ²⁰⁸Pb, we have applied approximations, discussed in I, especially the local-density approximation.

– We rely on the experimental values of the energy shifts and widths of the two lowest levels in Σ^- Pb determined in [9]. It should be stressed that to determine the energy shifts, one has to know very accurately the energy levels of the hypothetical Σ^- Pb atom with a switched-off strong interaction, which is a nontrivial theoretical problem.

– The HF densities, which we applied, were obtained with Skyrme effective two-body interactions assumed to depend on a single nucleon density, $\rho = \rho_n + \rho_p$. However, in an asymmetric nuclear matter with an appreciable neutron excess, the dependence of the effective interaction on two densities, ρ_n and ρ_p , may be important [25], especially for the magnitude of the Lane s.p. nuclear potential [26], which plays a role in estimating the radius of the proton distribution [27].

⁵ Replacing the original HF neutron density $\rho_n(r)$ by $\bar{\rho}_n(r)$ = $\frac{N}{Z}\rho_p(r)$ would also reduce $\alpha(r)$ to the value of $\bar{\alpha}$, but at the same time the overall size of the density, including its tail, would be reduced too much. The agreement with experiment of model F would be only slightly improved, and model D would remain to be favored.

The authors express their gratitude to Dr. Janusz Skalski and Prof. Alex Brown for making available to them their HF densities in ²⁰⁸Pb. This research was partly supported by Komitet Badan´ Naukowych under Grant No. 2P03B7522.

References

- 1. Y.Shimizu, PhD Thesis, University of Tokyo, 1996, unpublished.
- 2. J. Dąbrowski, J. Rożynek, Acta Phys. Pol. B 29, 2147 (1998).
- 3. J. Dabrowski, J. Rożynek, Acta Phys. Pol. B 35, 2303 (2004).
- 4. R. Sawafta, Nucl. Phys. A 585, 103c (1995); S. Bart et al., Phys. Rev. Lett. 83, 5238 (1999).
- 5. H. Noumi et al., Phys. Rev. Lett. 89, 072301 (2002).
- 6. N.M. Nagels, T.A. Rijken, J.J. de Swart, Phys. Rev. D 20, 1663 (1979).
- 7. J. Rożynek, J. Dąbrowski, Phys. Rev. C 20, 1612 (1979).
- 8. J. Dąbrowski, J. Rożynek, G.S. Anagnostatos, Eur. Phys. J. A 14, 125 (2002).
- 9. R.J. Powers et al., Phys. Rev. C 47, 1263 (1993).
- 10. N.M. Nagels, T.A. Rijken, J.J. de Swart, Phys. Rev. D 12, 744 (1975); 15, 2547 (1977).
- 11. P.M.M. Maessen, T.A. Rijken, J.J. de Swart, Phys. Rev. C 40, 2226 (1989); Nucl. Phys. A 547, 245c (1992).
- 12. J. Dąbrowski, Phys. Rev. C 60, 025205 (1999).
- 13. Y. Yamamoto, T. Motoba, H. Himeno, K. Ikeda, S. Nagata, Prog. Theor. Phys. Suppl. 117, 361 (1994).
- 14. A. Gal, G. Toker, Y. Alexander, Ann. Phys. (N.Y.) 137, 341 (1981).
- 15. E. Oset, L.L. Salcedo, R. Brockman, Phys. Rep. 188 79 (1990).
- 16. J. Dabrowski, J. Rożynek, Acta Phys. Pol. B 33, 1863 (2002)
- 17. J. Skalski, private communication; Acta Phys. Pol.B 34, 1977 (2003).
- 18. T.A. Rijken, V.G.J. Stoks, Y. Yamamoto, Phys. Rev. C 59, 21 (1999).
- 19. H. de Vries, C.W. de Jager, C. de Vries, At. Data Nucl. Data Tables 36, 495 (1987).
- 20. G. Fricke, C. Bernhardt, K. Heilig, L.A. Schaller, L. Scellenberg, E.B. Shera, C.W. de Jager, At. Data Nucl. Data Tables 60, 177 (1995).
- 21. B.A. Brown, Phys. Rev. C 58, 220 (1998).
- 22. S. Karataglidis, K. Amos, B.A. Brown, P.K. Deb, Phys. Rev. 65, 044306 (2002).
- 23. B.A. Brown, Phys. Rev. Lett. 85, 5296 (2000).
- 24. C. Garcia-Recio, J. Nieves, E. Oset, Nucl. Phys. A 547, 473 (1992).
- 25. J. Dąbrowski, Nukleonika 21, 143 (1977).
- 26. K.A. Brueckner, J. Dąbrowski, Phys. Rev. 134, B 722 (1964).
- 27. A. Bohr, B. Mottelson, Nuclear Structure, Vol. I (W.A. Benjamin Inc., 1969) p. 163.