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Abstract. The analyses of (K−, π) and (π−,K+) reactions indicate that the nuclear potential of the
Σ-hyperon is repulsive inside the nucleus, in agreement with the prediction of model F of the Nijmegen
baryon-baryon interaction. This is consistent with the recent calculation of the strong-interaction shifts and
widths of the observed levels of Σ− atoms, including the precise data on the Σ−Pb atom. In this paper,
the sensitivity of this calculation to the neutron and proton density distributions is used to determine these
densities in 208Pb.

PACS. 13.75.Ev Hyperon-nucleon interactions – 36.10.Gv Mesonic atoms and molecules, hyperonic atoms
and molecules

1 Introduction

The analyses [1–3] of the Brookhaven (K−, π) experi-
ments [4] and of the KEK (π−,K+) experiments [5] clearly
lead to the conclusion that the nuclear potential of the Σ-
hyperon is repulsive inside the nucleus, in agreement with
the prediction of model F [6] of the Nijmegen baryon-
baryon interaction1.

As we have shown in [8] (hereafter referred to as I),
this conclusion is consistent with properties of Σ− atoms,
i.e., strong-interaction shifts ε and widths Γ of the lowest
observed levels of Σ− atoms, including the precise data on
the Σ−Pb atom [9]. In calculating ε and Γ in I we applied
a definite form of the proton and neutron density distri-
butions ρp and ρn in the nuclear core of the Σ− atoms
considered. The resulting values of ε and Γ are sensitive
to the form of ρp and ρn.

In the present paper, we exploit this sensitivity to de-
termine ρp and ρn in the 208Pb nucleus. We choose this
nucleus because of the relatively high accuracy of the Σ−

data of ref. [9]. Furthermore, the oversimplified nucleon
densities in 208Pb, applied in I, were not well founded.

We apply the following procedure: we start with
Hartree-Fock (HF) densities ρp and ρn which we apply in
calculating ε and Γ for the two lowest states observed in
Σ−Pb. We do it for three models of the Nijmegen ΣN in-
teraction: models D [10] and F [6], and the soft-core model
SC [11]. Next, we modify ρp and ρn to a final form which

a e-mail: dabrnucl@fuw.edu.pl
1 Let us mention also that model F applied to the Λ +

nuclear-matter system, solves the so-called Λ overbinding prob-
lem [7].

assures that the best agreement between the calculated
and observed values of ε and Γ is achieved with model F.
Namely, we know from the analysis of the (K−, π) and
(π,K+) experiments that among the Nijmegen models
only model F is consistent with these experiments.

Our computational procedure is outlined in sect. 2,
and our results are presented and discussed in sect. 3.

2 The computational procedure

We calculate ε and Γ in the way described in detail in I.
We solve the Schrödinger equation for the wave function
Ψ of Σ− in the atom:

[−(~2/2µ)∆+ VC(r) + V (r) + iW (r)]Ψ = EΨ, (1)

where µ is the Σ−-nucleus reduced mass and VC is the
Coulomb interaction between Σ− and the nucleus. Be-
cause of the ΣΛ conversion process Σ−p → Λn, the
strong-interaction potential V + iW is complex and the
eigenvalue E is also complex, E = EC − ε − iΓ/2, where
EC is the pure Coulomb energy.

To calculate the real and absorptive strong-interaction
potentials V and W , we apply the local-density approx-
imation in which the Σ− atom is treated at each point
as Σ− moving in nuclear matter with the local nuclear
density of the Σ− atom:

V (r) = V NM(ρn(r), ρp(r)),

W (r) = WNM(ρn(r), ρp(r)), (2)

where V NM(ρn, ρp) and WNM(ρn, ρp) are the real and
imaginary parts of the single-particle (s.p.) potential of
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Table 1. Energy shifts ε, εu and widths Γ , Γ u calculated with the indicated models of the ΣN interaction and the nucleon
densities, respectively for the lower and upper level of the Σ−Pb atom and the corresponding values of χ2 for the 3 experimental
Pb data. All energies are in eV.

VΣN ε Γ εu Γ u χ2

D 448.1 506.7 11.5 8.9 7.9

A) HF−→ ρn, ρp
(a) F 24.7 236.6 2.4 6.0 65.2

SC 250.1 367.7 7.7 7.5 19.6

D 762.4 743.6 19.2 10,6 45.4
B) Vτ = 0 F 349.9 300.2 13.6 7.0 13.4

SC 235.5 380.5 6.8 7.6 21.0

D 688.2 891.6 20.1 19.4 31.9
C) ρp −→ ρ̄p = Z

N
ρn F 266.6 495.0 12.7 15.3 8.2

SC 268.6 626.6 8.8 16.6 9.1

D 658.2 770.6 19.9 18.3 22.7
D) ρ̄p −→ ρ̃p = ρ̄p + δρ̄p F 272.7 467.8 13.2 15.1 7.6

SC 270.4 582.4 8.8 16.2 8.4

Experiment (b) 422± 56 428± 158 17± 3

(a) Taken from ref. [17].

(b) Taken from ref. [9].

Σ− in nuclear matter with neutron and proton densities
ρn and ρp.

An expansion in terms of the neutron excess param-
eter α(r) = (ρn(r) − ρp(r))/ρ(r) [ρ = ρn + ρp] leads to
the splitting of V into the isoscalar potential V0 and the
isovector or Lane potential Vτ :

V (r) = V0(r) +
1

2
α(r)Vτ (r),

V0(r) = V NM
0 (ρ(r)), Vτ (ρ(r)) = V NM

τ (ρ(r)), (3)

where V NM
0 and V NM

τ are the isoscalar and Lane potentials
in nuclear matter with total density ρ (and with N = Z).
For V NM

0 and V NM
τ we use expressions in terms of the ef-

fective ΣN interaction derived in [12]. In the case of the
Nijmegen baryon-baryon interaction models considered in
this paper, we apply the effective YNG interaction ob-
tained in [13] within the low-order Brueckner theory.

For the absorptive potential, we apply the semi-
classical expression2 WNM ' −~

2ρp〈vσ〉, where 〈 〉 denotes
averaging in the Fermi sea, v is the relative Σ−p velocity,
and σ is the total cross-section for the Σ−p→ Λn conver-
sion process, for which we use the parametrization [14]:
(v/c)σ = (1 + 13v/c)−15.1 fm2, see footnote 3.

3 Results and discussion

In the Σ− 208Pb atom there are three data points mea-
sured in [9]: the energy shift ε and the width Γ of the
lower level with the principal and orbital quantum num-
bers n = 9, l = 8, and the width Γ u of the upper level

2 The expression actually used contains exclusion principle
corrections and the nucleon effective mass.

3 Our final conclusions would remain unchanged if we used
for σ the parametrization of Oset et al. [15], discussed in [16].

with n = 10, l = 9. They are shown in the bottom line in
table 1. We want to find nucleon densities in 208Pb, ρp(r)
and ρn(r) which lead to the best agreement between the
calculated and measured values of ε, Γ and Γ u. We do it
in four steps, A)–D).

A) We start with HF densities calculated by
Skalski [17] with the Skyrme interaction SkM∗. They are
shown in fig. 1 as the solid curves denoted as ρn and ρp.
Our results for the strong-interaction shifts and widths of
the lower and upper level in the Σ−Pb atom, obtained
with models D, F and SC of the Nijmegen interaction, are
shown in table 1, together with the values of χ2 calcu-
lated for the three experimental data points4. We see that
the value of ε calculated with model F is much smaller
than the experimental value. These results favor model D
which —as discussed before— is incompatible with the re-
sults of the Brookhaven (K−, π) and the KEK (π−,K+)
experiments. We interpret it as an indication that the HF
nucleon densities require modifications.

B) To get a hint on how to modify the HF densities,
let us consider the effect of the Lane potential Vτ . As dis-
cussed in I, Vτ is repulsive and thus its presence diminishes
the resulting value of ε. Consequently, if we disregard Vτ ,
the resulting value of ε should increase and improve the
agreement of model F results with experiment. This is in-
deed so as seen in table 1. At the same time, the resulting
value of ε for model D becomes too great compared to the
experimental result. The situation with the SC model is
slightly different because Vτ for this model is relatively
weak, and at very low density it becomes even attractive.
Anyhow, we see that in the absence of Vτ , model F leads
to the best agreement with the experimental data.

4 We do not consider the new soft-core model [18], because
—as shown in [12]— it leads to an attractive Vτ inside the
nucleus which is incompatible with the Brookhaven (K−, π)
experiments [4].
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C) However, a relatively strong Lane potential is im-
plied by the Nijmegen baryon-baryon interaction mod-
els (especially model F) and it cannot be disregarded as
it is essential in interpreting the Brookhaven (K−, π±)
experiments. Instead, we may diminish its contribution
1
2α(r)Vτ (r) to V (r) by diminishing the neutron excess pa-
rameter α(r) in the region of r essential in calculating ε
and Γ . As discussed in I, this region for the lower state
is around r ∼ 9 fm, and here our HF densities lead to a
substantial neutron excess, much bigger than the overall
value ᾱ = (N−Z)/A. The simplest way to reduce α(r) to
the value of ᾱ is to replace the original HF proton density
ρp(r) by ρ̄p(r) =

Z
N ρn(r). And indeed —as is seen in ta-

ble 1— with this form of the proton density distribution,
model F leads to the best agreement with experiment5.

D) Our proton density, ρ̄p(r), leads to the root-mean-
square (r.m.s.) radius of proton distribution Rp[ρ̄p] =

〈r2[ρ̄p]〉
1/2 = 5.62 fm, which is too big compared to the

semi-empirical r.m.s. radius of (point) proton distribution
Rse

p = 5.44 fm (this value of Rse
p leads —after taking into

account the r.m.s. proton charge radius of 0.8 fm— to
the r.m.s. radius of the charge distribution Rch = 5.50 fm
which is consistent with the r.m.s. charge radii of 208Pb
tabulated in [19] and in table XII in [20]). To reduce Rp

to the semi-empirical value of 5.44 fm, without increasing
the neutron excess in the peripheral region important in
the Σ−Pb problem, we shift some of the protons from the
interior region close to the nuclear surface towards the nu-
clear center. We do it by adding δρ̄p to ρ̄p obtaining our
final proton density ρ̃p(r) = ρ̄p(r) + δρ̄p(r). For δρ̄p we
assume the form

δρ̄p(r) = x1e
−(r/w1)

2

− x2e
−((r−R2)/w2)

2

, (4)

where x2 is determined by the condition: 4π
∫
drr2δρ̃p(r)=

0. For the remaining parameters we assume the values
x1 = 0.75(ρn(0) − ρ̄p(0)), R2 = 6.66 fm, w1 = 3.66 fm,
and w2 = 1.0 fm. With these parameters, the r.m.s. ra-
dius of the proton distribution becomes equal to the semi-
empirical radius, Rp[ρ̃p] = 5.44 fm.

Our final neutron and proton density distributions
ρn(r) and ρ̃p(r) are shown in fig. 1. Results obtained
with these densities for strong-interaction energy shifts
and widths of the two lowest observed levels in Σ−Pb, are
presented in table 1. They clearly favor model F with the
value of χ2 per degree of freedom, χ2/3 = 2.5. One ob-
tains very similar results if one applies the HF SkX den-
sities calculated by Brown [21]. These densities and the
corresponding proton density ρ̃p are presented in fig. 1 as
dotted lines.

For the r.m.s. radius of the neutron distribution, we get
Rn[ρn] = 〈r2[ρn]〉

1/2 = 5.62 fm, and for the neutron skin
S = Rn[ρn] − Rp[ρ̃p] = 0.18 fm. These results agree with

5 Replacing the original HF neutron density ρn(r) by ρ̄n(r) =
N

Z
ρp(r) would also reduce α(r) to the value of ᾱ, but at the

same time the overall size of the density, including its tail,
would be reduced too much. The agreement with experiment
of model F would be only slightly improved, and model D
would remain to be favored.

Fig. 1. The HF densities ρn, ρp of ref. [17] (solid curves) and
ref. [21] (dotted curves), and the corresponding modified pro-
ton densities ρ̃p.

the results obtained from the analyses of nucleon elastic
scattering [22], of neutron equation of state [23], and of
pionic atoms [24].

Although our proton density ρ̃p(r) leads to the semi-
empirical value of 5.44 fm of the r.m.s. radius, it differs
from the proton densities implied by the charge density
distributions tabulated in [19] and [20]. In the nuclear cen-
ter, our ρ̃p is bigger than what is implied by the tabulated
charge density distributions. This difference, however, ap-
pears not so important if one considers the more rele-
vant quantity r2ρ(r). In the nuclear periphery relevant for
the observed levels in the Σ−Pb atom, the neutron excess
(ρn(r)− ρ̃p(r))/(ρn(r) + ρ̃p(r)) is close to ᾱ = (N−Z)/A,
whereas the neutron excess obtained with the HF densities
approaches the value one. This is reflected in the values
of the higher moments of our proton distribution, 〈r4〉1/4

and 〈r6〉1/6, which are greater than the HF values and the
values implied by table IX in [20].

We conclude with the following comments:

– To reach our conclusions concerning the nucleon den-
sity distribution in 208Pb, we have applied approxima-
tions, discussed in I, especially the local-density approxi-
mation.

– We rely on the experimental values of the energy
shifts and widths of the two lowest levels in Σ−Pb
determined in [9]. It should be stressed that to determine
the energy shifts, one has to know very accurately the
energy levels of the hypothetical Σ−Pb atom with a
switched-off strong interaction, which is a nontrivial
theoretical problem.

– The HF densities, which we applied, were obtained
with Skyrme effective two-body interactions assumed to
depend on a single nucleon density, ρ = ρn+ρp. However,
in an asymmetric nuclear matter with an appreciable neu-
tron excess, the dependence of the effective interaction on
two densities, ρn and ρp, may be important [25], especially
for the magnitude of the Lane s.p. nuclear potential [26],
which plays a role in estimating the radius of the proton
distribution [27].
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